Re: Air Toxics Hot Spots Program – Chronic Toxicity Summary for Silica (Crystalline, Respirable)

Dear Dr. Salmon:

You have asked for comments concerning your above summary. You based your Inhalation Reference Exposure Level (iREL) for respirable crystalline silica on the study of Hnizdo & Sluis-Cremer (1993), corrected for the average crystalline silica content they reported for South African gold mines. This study was supported by dose-response relationships between crystalline silica and silicosis noted by several studies, the availability of several long-term worker exposure studies at various concentration ranges and the observation of no adverse effect levels for respirable crystalline silica reported in some studies. I am concerned that you corrected the Hnizdo & Sluis-Cremer study without comment concerning the relationship between the dust exposures they measured in their study (combusted, acid-washed respirable dust) and your correction for silica in respirable dust; your choice of setting an iREL against dust that falls within a range that can deposit anywhere in the thoracic region as opposed to respirable dust; and the lack of discussion, or correction in your iREL assessment, for bias created by choosing a mass median aerodynamic diameter (MMAD) that is appreciably larger than used in the epidemiological studies you used for the development of the iREL such that excessively large crystalline silica content of samples representing the MMAD would be expected.

Correction of iREL for quartz content of respirable dust

Hnizdo & Sluis-Cremer (1993) base their risk assessment on exposure to acid washed and combusted respirable dust. They comment that this treatment results in respirable dust that is mainly made up of crystalline silica and silicates. They comment that respirable dust in South African gold mines contains an average of 30% quartz. This dust, however, likely represents untreated dust. Your correction, therefore, is likely to make your iREL unduly conservative. Without the correction, the iREL would be closer to that
expected if you used the Hughes, et al. (1998) analysis. With the correction your iREL is closer to that you would expect if you use the Steenland & Brown (1995) analysis. You may want to either take USEPA’s approach and base your iREL on a number of studies or comment on the whether or not the likely error introduced by correcting for respirable quartz content of mine dusts is acceptable.

Use of inhalable vs respirable dust for your iREL

ACGIH (1998) defines thoracic particulate mass as that dust with MMAD of 10 μm. They note that it is an appropriate descriptor for exposure to dusts from those materials that are hazardous when deposited anywhere within the airways and the gas-exchange region of the lungs. Materials that cause both airway irritation and lung effects, such as sulfur dioxide, would be appropriate to monitor using this parameter. On the other hand, they define respirable particle mass (respirable dust) as that dust with a MMAD of 4.0 μm. They note that this measurement should be used for those materials that are hazardous when deposited in the gas-exchange region. This latter definition is in accord with the International Organization/European Standardization Committee protocol for measurement of respirable dust. You have chosen to use an iREL based upon measurements of thoracic particle mass, instead of respirable dust. An iREL based upon the latter may be more appropriate. Hearl (1997) notes that measurements of respirable dust, as defined by ACGIH and ISO, are intended to apply to health-related sampling both in the workplace and general environment.

Raabe (1982) notes that “particle size-related standards are necessary to provide more meaningful measurements for both source emission control and environmental monitoring where the lung is the principal organ of concern…’[I]nhalable’ particle sampling would tend to obscure the contribution to environmental aerosols of smaller, more respirable and stable particles that are of primary importance in potential risks to pulmonary and small bronchial airways.” Respirable crystalline silica certainly falls in this paradigm: quartz particles that will produce silicosis are those that deposit in the smallest airways (bronchioles) and alveoli.

Your iREL is not only more appropriately represented by measures of respirable crystalline silica but will be strengthened by such a change. I have reviewed the industrial hygiene measures used as a basis for risk assessment for the relationship between exposure to crystalline silica and silicosis in the studies outlined in the table below and reviewed in your Chronic Toxicity Summary. In each instance measurements either were of respirable dust or silica or converted to respirable dust or silica. In most instances the norm was either the ACGIH or ISO standard where respirable dust collectors collected particles with a MMAD of 4.0 μm. In two studies respirable particle counts where the particle diameters were 5 μm or less were converted to respirable dust mass exposure without comparison to a cyclone which collected particles with a MMAD of 4.0 μm. In these instances the MMAD of the particles might be expected to be <6 μm, the MMAD of respirable particle counts above a geometric mean of 3 μm (Rando et al, 2001). An iREL based on a MMAD of 4.0 would be supported by studies upon which you based your iREL determination and would make your iREL a true health effects-based iREL.
Table: Respirable dust measurement methods in epidemiological studies relating exposure to risk of silicosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Quartz measurement</th>
<th>Median respirable mass fraction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario hard rock miners</td>
<td>Cyclone and conversion of konimeter counts to respirable mass by comparison</td>
<td>4 µm</td>
<td>Muir et al ‘89, Verma et al ‘89</td>
</tr>
<tr>
<td>Gray iron foundry workers</td>
<td>Conversion of respirable dust counts to respirable mass and multiplication by bulk silica %</td>
<td><6 µm</td>
<td>Rosenman et al ‘96</td>
</tr>
<tr>
<td>Diatomaceous earth workers</td>
<td>Cyclone, total dust and respirable dust counts with conversion of latter to respirable mass by comparison</td>
<td>4 µm</td>
<td>Hughes et al ‘98, Seixas et al ‘97</td>
</tr>
<tr>
<td>South African gold miners</td>
<td>Integrated respirable dust counts and surface area to get respirable mass</td>
<td><6 µm</td>
<td>Hnizdo & Sluis-Cremer ‘93</td>
</tr>
<tr>
<td>Scotish coal workers</td>
<td>Integrated measurements of respirable dust and settled dust silica levels</td>
<td>4 µm</td>
<td>Miller et al ‘98</td>
</tr>
<tr>
<td>South Dakota gold miners</td>
<td>Respirable dust mass and conversion of respirable dust counts to respirable mass by comparison</td>
<td>4 µm</td>
<td>Steenland & Brown ‘95</td>
</tr>
<tr>
<td>Leadville miners</td>
<td>Assignment of representative respirable silica levels to respirable dust exposure measurements</td>
<td>4 µm</td>
<td>Kreiss & Zhen ‘96</td>
</tr>
<tr>
<td>Chinese tin miners</td>
<td>Cyclone and conversion of total dust mass to respirable mass by comparison</td>
<td>4 µm</td>
<td>Chen et al ‘01</td>
</tr>
<tr>
<td>Industrial sand workers</td>
<td>Cyclone and conversion of respirable dust counts to respirable mass by comparison</td>
<td>4 µm</td>
<td>Rando et al ‘01</td>
</tr>
</tbody>
</table>

Relationship of crystalline silica content to MMAD of dusts
Quartz content of soil-related dusts (the major source of crystalline silica in rural and agricultural regions, USEPA 1996) increases as particle size increases. We (Stopford & Stopford, 1995) found that the quartz content of clay-containing soils that passed through a 45 mesh sieve (MMAD ranging from 7.7 to 58.9 µm) ranged from 17.5 to 52.0% while the quartz content of 4 µm fraction of these same soils ranged 1.3 to 3.4%, values averaging 14 fold less than for the course soil. Similarly, Davis, et al (1984) when
comparing the course (>2.5 \(\mu m\) cut) and fine (<2.5 \(\mu m\) cut) fractions of PM10 samples found that the quartz content of the course fractions averaged 4.9% while those of the fine fractions averaged 0.4%, 12 fold less than the average quartz content of the course fraction. USEPA (1996) re-analyzed this data and found that the quartz content of the fine fraction had a geometric mean concentration of 0.1% and that of the course fraction a geometric mean concentration of 7.2%. For the California cities in the Davis et al (1984) study, the respirable quartz content of the course fraction ranged from 1.9 to 6.0% and for the fine fraction from non-detectable to 1.0%. Chow et al (1993) found a similar relationship in analyzing the PM10 and PM2.5 silicon values in samples collected in cities in the San Joaquin Valley. The PM10 silicon values averaged from 5.2 to 8.7 \(\mu g/m^3\) while PM2.5 silicon values averaged from 0.33 to 0.82 \(\mu g/m^3\). PM10 samples have a MMAD of about 8 \(\mu m\) (McClellan & Miller, 1997). Using a MMAD of 10 \(\mu m\) would further exaggerate the crystalline silica content of environmental samples, unduly weighing the quartz content of the non-respirable fraction of samples collected to represent the 10 \(\mu m\) MMAD distribution. Basing your iREL for respirable quartz on a particle distribution with a MMAD of 4 \(\mu m\) would avoid this bias.

Respectfully submitted,

Woodhall Stopford, MD, MSPH
Assistant Clinical Professor

References

Davis BL; Johnson LR; Stevens RK; Courtney WJ; Safriet DW. The Quartz Content And Elemental Composition Of Aerosols From Selected Sites Of The EPA Inhalable Particulate Network. Atmos Environ. 1984; 18 (4): 771-82.

McClellan RO, Miller FJ. An overview of EPA's proposed revision of the particulate matter standard. CIIT Activities 1997;17:1-22

Rosenman KD; Reilly MJ; Rice C; Hertzberg V; Tseng CY; Anderson HA. Silicosis among foundry workers: Implication for the need to revise the OSHA standard. Am J Epid.1996; 144(9):.890-900.

